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Abstract. Cancer incidence and mortality rates are high in West Virginia compared to the rest of the United States of
America. Previous research has suggested that exposure to activities of the coal mining industry may contribute to ele-
vated cancer mortality, although exposure measures have been limited. This study tests alternative specifications of
exposure to mining activity to determine whether a measure based on location of mines, processing plants, coal slurry
impoundments and underground slurry injection sites relative to population levels is superior to a previously-reported
measure of exposure based on tons mined at the county level, in the prediction of age-adjusted cancer mortality rates.
To this end, we utilize two geographical information system (GIS) techniques – exploratory spatial data analysis and
inverse distance mapping – to construct new statistical analyses. Total, respiratory and “other” age-adjusted cancer
mortality rates in West Virginia were found to be more highly associated with the GIS-exposure measure than the ton-
nage measure, before and after statistical control for smoking rates. The superior performance of the GIS measure,
based on where people in the state live relative to mining activity, suggests that activities of the industry contribute to
cancer mortality. Further confirmation of observed phenomena is necessary with person-level studies, but the results
add to the body of evidence that coal mining poses environmental risks to population health in West Virginia. 
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Introduction

Cancer mortality in West Virginia and other
parts of Appalachia is high relative to the United
States of America as a whole (Huang et al., 2002;
Halverson et al., 2004; Wingo et al., 2008). The
higher cancer mortality in the region has been
attributed to behavioural risks such as smoking,
poor socio-economic conditions and problematic

access to medical care (Huang et al., 2002).
However, recent research evidence also points to
the impact of the coal mining industry on popula-
tion health. Persons who live in coal mining coun-
ties of Appalachia, compared to non-mining coun-
ties or the nation, have elevated all-cause
(Hendryx, 2008; Hendryx and Ahern, 2009) and
lung cancer (Hendryx et al., 2008) mortality, after
controlling for socio-economic, health services
and behavioural variables.

Coal contains many established carcinogens
including arsenic, cadmium, chromium, nickel,
beryllium and others (WVGES, 2007a), and coal
extraction, processing and transportation activi-
ties have contaminated trillions of gallons of
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water (Todd, 2008) and released tons of particu-
late matter into the air near mining communities
(Ghose, 2007). Previous studies of the effects of
coal mining on community health have relied on
the tons of coal mined at the county level as the
exposure measure, which is then correlated to
health outcomes, also usually at the county level
(Hendryx, 2008, 2009; Hendryx et al., 2008).
Although statistical controls are made for con-
founding factors such as race/ethnicity, smoking,
education, physician supply, poverty and others,
the results are still limited to this exposure meas-
ure and have not accounted for more specific
activities of the mining industry in relation to pop-
ulation concentrations and health outcomes. 

The purpose of the current study was to use geo-
graphic information systems (GIS) to develop and
test a more refined measure of population exposure
to components of the mining industry in West
Virginia compared to the exposure measure used in
previous studies, by relating the comparative expo-
sure measures to cancer mortality. The more refined
measure is a distance-weighted population exposure
score, distance being distance to components of the
mining industry, as described in the next section. If
it is true that exposure to extraction and processing
activities of the mining industry increases cancer
risk among community residents, one would expect
distance-weighted population exposure measures to
be more highly correlated to cancer mortality rates
than the previous measure of tons of county-level
coal mining. If, on the other hand, cancer mortality
is not causally related to exposure to mining activi-
ty, but reflects only socio-economic or behavioural
confounds, there should be no improvement in the
capacity of the exposure measure to account for
mortality rates. We have tested the hypotheses that
(i) age-adjusted county cancer mortality rates will be
positively associated with distance-weighted popu-
lation exposure to coal extraction and processing
activities, and (ii) the distance-weighted exposure
measure will be more strongly correlated to cancer
mortality than exposure based on tons of coal
mined in the county.

Materials and methods

Study area

This study focuses on one state within the
Appalachian region, West Virginia. Uniquely among
Appalachian states, all 55 of West Virginia’s coun-
ties fall within the Appalachian region as defined by
the Appalachian Regional Commission (ARC,
2007). US Census data indicate that the total popu-
lation of West Virginia is slightly over 1.8 million
people, 37th among all states (US Census 2009a, b). 

West Virginia is largely rural. Of the 55 counties,
eight are classified as “metropolitan” by the US
Department of Agriculture (USDA) Economic
Research Service’s Urban Influence Coding system
(ARF, 2006). With the exception of Jefferson coun-
ty, which lies in the eastern panhandle close to
Washington D.C., the major urban area of West
Virginia is the Kanawha River Valley, in the south-
western part of the state. The seven counties in this
valley contain the state’s two largest cities –
Charleston, the state capital, and Huntington. The
remaining 47 counties are all classified as “non-
metropolitan” and their respective codes cover the
gamut from “micropolitan adjacent to large metro
area” to “noncore adjacent to micro area, contain-
ing a town of 2,500–9,999 residents.” In terms of
population, the rural/urban dichotomy is reflected
in the Census 2000 values. Approximately 50% of
West Virginia’s population resides within just 11
counties. Ten counties have less than 10,000 resi-
dents. West Virginia’s counties have an average pop-
ulation density of 94.9 persons, and a median of
51.1 persons, per square land mile. When the coun-
ty population density is mapped by natural breaks
(JENKS) classification, 29 of West Virginia’s 55
counties fall into the lowest value group. 

West Virginia has a long history of coal mining as
a principal industry. While most (if not all) West
Virginia counties have been touched in some way by
coal mining, most production has taken place with-
in a few core areas. The coal infrastructure data uti-
lized in this analysis is concerned with the location
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of various types of facilities (see the Data subsection
below). As can be seen in Figure 1, these facilities
are mostly located along a southeast (SW) to north-
east (NE) trending band of counties through the
central part of the state.

Data

Cancer mortality rates were taken from the
Centers for Disease Control and Prevention (CDC)
(Atlanta, GA, USA) public data website (CDC,
2008). The rates are age-adjusted using the 2000 US
standard population, and are found for West
Virginia counties as the rate per 100,000 person-
years for 1979-2004. The person-year approach
allowed us to aggregate across years to estimate can-
cer mortality in rural, less populated counties that
typify most coal mining locations. Based on
International Classification of Disease (ICD)-9
(years 1979-1998) and ICD-10 (years 1999-2004)
diagnostic classifications, mortality rates were
found for digestive, genital, urinary, breast, oral,
respiratory, other and combined cancer sites. These

are the major diagnostic classifications provided on
the CDC data consistently across ICD-9 and ICD-
10 specifications and represent the major body sys-
tems for which rates are reported. Table 1 sum-
marises the diagnostic categories.

US Census data for the year 2000 were used to
find the population of each census block group
within the state. This dataset was acquired from a
DVD of base layer geographic information of the
United States of America. The DVD was published
by Environmental Systems Research Institute (ESRI)
(Redlands, CA, USA), but the dataset itself origi-
nates from the United States Census Bureau. 

Potential county-level covariates were based on
prior studies (Hendryx and Ahern, 2008; Hendryx
et al., 2008.) The time period, represented by
covariates, was sometimes based on the 2000
Census, and sometimes on more recent estimates
when available. These covariates include average
poverty rate for 2000-2002, high school and college
education rates in 2000, supply of primary care
physicians per 1,000 population in 2001, smoking
rate in 2003, percent race/ethnicity categories as of

Fig. 1. West Virginia mining activities by count (1979-2004).
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2002 (i.e. White, Native American, African
American, Asian American, non-white Hispanic),
2000 rural-urban continuum code, health insurance
rate in 2000, and percent female population in
2000. Data for most covariates were obtained from
the Area Resource File (ARF, 2006). Smoking rates
were taken from the CDC Behavioral Risk Factor
Surveillance System (BRFSS) website (CDC, 2007)
supplemented with examination of the state public
health department website. 

Geographic data on activities of the coal mining
industry included mining permit boundaries for
mining sites, the point locations of surface slurry
impoundment dams, the point locations of permit-
ted underground injection sites, and the point loca-
tions of coal processing facilities (preparation
plants). Most of the data compilation and manipu-
lation was performed using ArcView GIS software,
versions 9.2 and 9.3 (ESRI, Redlands, CA, USA).
Most datasets originate from the West Virginia
Department of Environmental Protection
(WVDEP), but in some cases, additional analysis
has been undertaken. The WVDEP publishes a spa-
tial database of mine permit boundaries within West
Virginia via an internet website
(http://gis.wvdep.org/data/omr.html) (WVDEP,

2009). For the purpose of this study, we removed
permit boundary polygons whose permit dates did
not interest the time period of interest – 1979 to
2004. In total, we included 2,924 mining bound-
aries in the study. It is important to note that these
boundary areas can overlap and thus, it is difficult
to count a single boundary area as a single mine as
certain mine features – such as roads – are often
reused and re-permitted in subsequent mining oper-
ations. Likewise, the measure of total acres of min-
ing per county is best described as approximate
given this reality and the inherent inaccuracies of the
data and it’s reflection of reality on the ground.

Mining operations often involve the capture of
used water in artificial impoundments, held in place
by earthen dams, for the purpose of removing con-
taminants and non-combustibles. Acid mine
drainage (AMD) is also held in surface impound-
ments. These coal impoundment dams are also reg-
ulated by the WVDEP. According to WVDEP GIS
management, the overall spatial accuracy of the coal
impoundment dam dataset utilized in this study is
high (M Shank, WVDEP, personal communication).
The data are difficult to maintain, however, and as
such, temporal accuracy is difficult to quantify, but
assumed to be less than current. In our own explo-

ICD-9 Codes ICD-9 Labels ICD-10 Codes ICD-10 Labels

140-149 Lip, oral cavity
and pharynx

C00-C14 Lip, oral cavity and pharynx

150-159 Digestive organs 
and peritoneum

C15; C16; C18-
C21; C22; C25

Esophagus; stomach; colon, rectum and anus; liver and intrahepatic
bile duct; pancreas

160-165 Respiratory
and intrathoracic

C32; C33-C34 Larynx; trachea, bronchus and lung

174-175 Breast C50 Breast

179-187 Genital organs C61; C53;
C54-C55; C56

Prostate (males); cervix uteri; corpus uteri and uterus; ovary
(females)

188-189 Urinary organs C64-C65; C67 Kidney and renal pelvis; bladder

200-203;
204-208;
170-173;
190-199

Other malignant 
neoplasms of lymphatic 
and hematopoietic tissue;
leukemia; all other and
unspecified

C81; C82-C85;
C88-C90; C96;
C91-C95; C43;
C70-C72

Hodgkin’s disease; non-Hodgkin’s lymphoma; multiple myelomas
and immunoproliferative neoplasms; other unspecified neoplasm of
lymphoid hematopoietic and related tissue; leukemia; all other and
unspecified

Table 1. ICD-9 (years 1979-1998) and ICD-10 (years 1999-2004) codes used to classify cancer mortality by site.
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rations of the data, we compared the points to 2003
aerial photography and found that most (115
points, or 84%) of the points align with a dam in
existence as of that date. A few (22 points, or 16%)
appear to be reclaimed, although health considera-
tions from these prior impoundments may still be
relevant. At this time we cannot assign a reclama-
tion date to these points. We used all 137 coal
impoundment dams in this study. 

We identified two sources of spatial information
for coal processing facilities. The first, derived from
the US Environmental Protection Agency (EPA)’s
facility registry system, appeared to be incomplete
when compared to the data obtained from the
WVDEP. In the end, we derived a subset of points
from the WVDEP’s point database of coal activities
permits that pertained to coal processing facilities.
We then performed a basic photo alignment of these
features using 2003 aerial photography. Where pos-
sible, the point was relocated to a more accurate
location. Of 76 entities, 46 were realigned in this
way. The remaining 30, most of which had been
reclaimed at the time of the aerial photography,
remained in their originally published location. 

The last coal mining feature utilized in this study
is slurry injection site locations. These are areas
where waste water from mining, drilling or process-
ing has been injected into underground voids for the
purpose of storage. These entities are permitted by
the WVDEP as part of the mine process and the
points at which they discharge (into a nearby stream
or reservoir) are permitted by the EPA as National
Pollution Discharge Elimination System (NPDES)
points. The content of the slurry is monitored at the
discharge points as part of the NPDES regulatory
process. The data we use in this study were com-
piled from the WVDEP permit database and EPA
NPDES database. This study did not differentiate
between injection sites and discharge points. In
total, the dataset contains 270 points. 

The analysis was completed in three phases. First,
we conducted an exploratory spatial data analysis
(ESDA) to determine if, in fact, any quantifiable
spatial relationships existed between our existing

data. Second, we developed a distance-based index
describing, per county, the proximity of that coun-
ty’s population to coal mine features. Last, we uti-
lized this index in a regression analysis, discussed in
more detail in the “Analysis and Results” section.

Analysis

The current ESDA of the association between coal
extraction and processing activities and cancer mor-
tality rates was conducted on census block group
and county level data for West Virginia. GIS and its
spatial analysis tools were used to examine the spa-
tial association/autocorrelation between county-level
age-adjusted combined cancer mortality rates and
total tonnage of coal production per county. First, a
global measure of spatial autocorrelation to measure
the level and direction (e.g. positive or negative) of
association for the entire sample was used. Here, we
tested the hypothesis that the univariate and bivari-
ate global measures result in positive spatial auto-
correlation. If the variables of interest are found to
have positive spatial autocorrelation, then their local
statistics of spatial autocorrelation are calculated to
identify where these spatial clusters exist. 

Global spatial autocorrelation was used to test the
overall spatial dependency of the variables of inter-
est by calculating a Moran’s I statistic. Moran’s I is
defined as:

where Zi is the deviation of the variable of interest
with respect to the mean; Wij the spatial weight
matrix (i.e. a binary matrix with “ones” in position
i,j whenever observation i is a neighbour of obser-
vation j, and otherwise “zero”); N the number of
observations and ∑i ∑j Wij the standard deviation
(Anselin, 1995). The resulting test is similar to a
correlation coefficient as it varies between -1.0 and
+1.0. This test of global spatial autocorrelation was
computed using GeoDa 0.9.5-i software down-

I = 
∑i ∑j ∑ij

∑i ∑j Wij Zi Zj
N

∑i Zi
2
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loaded from Arizona State University’s GeoDa
Center. 

The variables of interest, county-level age-adjust-
ed combined cancer mortality rates (1979-2004)
and tonnage of coal production per county (1986-
2005), were joined to a georeferenced spatial coun-
ty layer file of West Virginia and its first order
(neighbouring) counties from surrounding states.
The tonnage measure, rather than the distance-
weighted measure, was used for the spatial analysis
because we could capture tonnage measures from
border counties outside West Virginia. However, the
mapping of mining activities was available only
within the state. The data were joined to the georef-
erenced spatial county layer file by their unique 5-
digit federal information processing standards
(FIPS) code. A spatial weight (W) was then created
to impose a neighbourhood structure on the data.
We chose and created a queen contiguity weight
matrix for each variable of interest. 

We then calculated two univariate Global
Moran’s I statistics, one for the county-level age-
adjusted combined cancer mortality rates (1979-
2004) and one for the total tonnage of coal pro-
duction per county (1986-2005). We also calculat-
ed a bivariate Global Moran’s I statistic with the
total tonnage of coal production per county (1986-
2005) along the X-axis and the county-level age-
adjusted combined cancer mortality rates (1979-
2004) along the Y-axis. Lastly, we randomized each
Global Moran’s I statistic by 999 random permuta-
tions to yield a pseudo p-value. Finally, we inter-
preted Moran’s I by whether the values of I were
significantly greater than the expected values (posi-
tive spatial autocorrelation) or significantly less
than the expected values (negative spatial autocor-
relation). 

The local indicators of spatial autocorrelation
(LISA) statistic has been described, in the words of
Anselin (1998), as “an indicator that achieves two
objectives: it allows for the detection of significant
patterns of local spatial association (i.e. association
around individual location), and it can be used as a
test for stability of a global diagnostic (i.e. to assess

the extent to which the global pattern of associa-
tion is reflected uniformly throughout the data set”. 

This local Moran’s I statistic is derived form the
Global Moran’s I statistic by the formula:

where N is the number of observations (Anselin,
1995). The current LISA analysis is identical to the
global spatial autocorrelation analysis in software,
data, spatial weight matrix, number of tests and per-
mutations. However, this analysis results in the pro-
duction of a 95% level of significance cluster map,
which classifies four different cluster types: high-
high, low-low, low-high and high-low (Anselin,
2003). The high-high and low-low clusters suggest
areas where similar values are clustered together
indicating positive spatial autocorrelation, while
low-high and high-low clusters indicate spatial out-
liers and negative spatial autocorrelation (Anselin,
2003; GeoDa Center, 2009).

Distance-weighted at-risk population index

The results of the ESDA indicate that a quantifi-
able relationship between population proximity to
coal mine features and cancers exists (see the
“Analysis and Results” section). We were presented
with a challenge at this point: although we are for-
tunate to have access to point data that precisely
locate coal mine features, our cancer rate informa-
tion remained at a coarse county-level resolution.
We opted to create a simple distance-based statistic
using the finest scale data available which could
then be summed at the county level. While the
potential exposure variable would still be coarse,
the finer scale of the source data should enhance the
analysis and allow for a test of the primary study

I = 
Ii

N

∑Zi
2 , hence

i

∑ ,
i

I = 
Zi

m2
∑Wij Zj , where
j

m2 = 
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hypothesis. We opted to utilize distance to account
for the potential fallacies that exist when quantify-
ing exposure based on counting facilities based on
arbitrary boundaries (Maantay, 2002).

We developed the refined exposure index using
simple GIS techniques, the main steps of which are
illustrated in Figure 2. As described above, the poly-
gon location of every coal mine was mapped, along
with the point location of every coal preparation
plant, slurry impoundment dam, and permitted
underground slurry injection site. Next, we deter-
mined Euclidean distance from each of the coal min-
ing infrastructure entities via 30x30 m grid cell dis-
tance measures. Within each of the study area’s cen-
sus block groups, we calculated the mean distance in
km from each to the nearest (i) mine boundary poly-

gon, (ii) impoundment dam centroid, (iii) injection
site, and (iv) preparation plant (Fig. 2, step 1). We
then found the inverse distance (1/distance) for each
mine infrastructure type for each block group. The
mean inverse distances were multiplied by the pop-
ulation of the block group. This results in a value
per block group/infrastructure type wherein closer
distances and bigger populations have larger values,
and farther distances and smaller populations have
smaller values (step 2).

These values are representative of a population
“P” variable adjusted by inverse distance as a met-
ric of exposure. These values were summed across
type “t” (mine “m”, impoundment dam “d”, injec-
tion site “I”, and preparation plant “p”) (step 3)
and across block group “k” to the county-level (step

Fig. 2. Representation of construction of the distance-weighted at risk population index.
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4), and divided by the total county population “Pc”,
to find the total mean per capita county-level dis-
tance-weighted mining impact score (step 5). This
measure of exposure can be expressed as:

As with previously published studies (Hendryx et
al., 2007, 2008ab, 2009; Hendryx and Ahern,
2008) the “old” measure of mining exposure was
constructed by creating a 3-level variable that divid-
ed counties into no mining (n = 24 counties), mod-
erate mining levels (n = 16), or high mining levels (n
= 15), based on tons of coal mined at the county-
level. The boundary between moderate and high
was set at 4 million tons for the years 1986-2005,
the median value dividing mining counties into
equal sized groups. County-level coal production
statistics were drawn from the West Virginia
Geologic and Economic Survey (WVGES, 2007b)
which includes statistics only back to 1986. The
new and old measures of exposure are termed the
distance-weighted exposure measure and the ton-
nage exposure measure, respectively.

Results

Analysis

All three global spatial autocorrelation tests (can-
cer, coal and the bivariate) resulted in positive spa-
tial autocorrelation. The univariate global spatial
autocorrelation test of county-level age-adjusted
combined cancer mortality rates yielded: Moran’s
I = 0.405; E[I] = -0.011; mean = -0.008; SD = 0.066,
where: E[I] is the expected Moran’s I and SD is the
standard deviation of Moran’s I. The univariate
global spatial autocorrelation test of county-level
total tonnage of coal production yielded: Moran’s
I = 0.354; E[I] = -0.011; mean = -0.011; SD = 0.061.

The bivariate global spatial autocorrelation between
total tonnage of coal production per county and
county-level age-adjusted combined cancer mortali-
ty rates yielded: Moran’s I = 0.218; E[I] = -0.011;
mean = -0.001; SD = 0.049. All three global spatial
autocorrelation tests yielded a pseudo significance
value of P <0.001, which indicates that the data are
not spatially random.

The LISA tests resulted in three 95% significance
cluster maps (Fig. 3). The county-level, age-adjust-
ed, combined cancer mortality rates’ 95% signifi-
cant cluster map (Fig. 3a) yielded six counties
(Wayne, Lincoln, Mingo, Logan, Boone and
Wyoming) categorized as being high-high clusters
and seven counties (Preston, Tucker, Randolph,
Pocahontas, Pendleton, Grant and Hardy) classified
as being low-low clusters. Two counties, Putnam
(low-high) and Mineral (high-low), were found to
be spatial outliers. Spatial clusters, high-high and
low-low, are said to be significantly higher and
lower than the global Moran’s I, while the low-high
and high-low clusters are individual locations signif-
icantly different than their neighbors. 

The county-level, total tonnage of coal produc-
tion’s 95% significant cluster map (Fig. 3b) yield-
ed six counties (Marshall, Mingo, Logan, Boone,
Wyoming and Raleigh) as being high-high clusters
and nine counties (Jefferson, Berkeley Hardy,
Pendleton, Monroe, Pleasants, Ritchie, Wirt, and
Gilmer) classified as low-low clusters. Two coun-
ties, Wetzel and Lincoln were found to be low-high
spatial outliers. The bivariate LISA 95% signifi-
cant cluster map between county-level, total ton-
nage of coal production and county-level, age-
adjusted combined cancer mortality rates (Fig. 3c),
yielded five counties (Mingo, Logan, Boone,
Wyoming and Raleigh) that were classified as high-
high clusters, while eight counties (Wetzel,
Pleasants, Ritchie, Wirt, Gilmer, Hardy, Pendleton
and Monroe) were classified as being low-low clus-
ters. There were three low-high classified spatial
outliers: Jefferson, Berkeley, and Lincoln, while
Marshall was the only high-low classified spatial
outlier.

Pc

k

∑ (∑ Pk (l/dt))
i = 1

∑ Pk (l/dt) = Pk / dm + Pk / dd + Pk / di + Pk / dp

, where
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Correlation and regression analysis

Correlations were found between age-adjusted
cancer mortality rate and the alternative exposure
measures in comparative models. We used Pearson
correlations for the distance-weighted exposure
measure and Spearman correlations for the cate-
gorical tonnage measure. Then, ordinary least
squares regression models were used to compare
the distance-weighted and tonnage exposure meas-
ures while accounting for covariates within con-

straints of the limited sample size, with age-adjust-
ed cancer mortality as dependent variables.
Covariates were identified using preliminary step-
wise regression models setting entry into the model
at P <0.05.

Descriptive statistics on mining activity and can-
cer mortality are shown in Table 2. The average per-
son lived 7 km from the nearest coal mine, 27 km
from the nearest preparation plant, and 32 km from
the nearest slurry impoundment or permitted under-
ground injection site. 

Fig. 3. Local indicators of spatial autocorrelation (LISA) cluster maps.
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Table 3 shows that the correlations between can-
cer mortality and the total distance-weighted expo-
sure were higher than the corresponding correla-
tions between cancer mortality and the tonnage
exposure measure for all cancer sites except breast

cancer. Both the old and the new measures of expo-
sure were correlated significantly to “other” and
total cancer, but the correlations reached higher lev-
els of statistical significance for the new measure.
Respiratory cancer was found to be correlated to the
distance-weighted measure but not to the tonnage
measure.  

Selection of covariates for regression analysis is
limited by the small sample size. Stepwise regression
models were used to identify the most important
independent variables based on a P <0.05 inclusion
criterion. Two variables were thus identified: smok-
ing rates and the weighted exposure variable. This
analysis used total cancer mortality rates as the
dependent variable. No other variable, including the
tonnage exposure measure, race/ethnicity percent-
ages, education, poverty, primary health care access,
health insurance rates, rural-urban setting or per-
cent female population contributed significant addi-
tional variance beyond exposure and smoking when
considered in stepwise fashion. However, to test the
second hypothesis, the tonnage exposure measure
was carried forward with the distance-weighted
exposure measure and the smoking variable into the
next analyses.

When the two exposure variables were compared
controlling for smoking, total cancer mortality rate
remained independently associated with the dis-

Cancer statistics Mean* Standard deviation 
(SD)*

Breast
Digestive
Genital
Oral
Respiratory
Urinary
Other
Total

14.8
48.1
22.9
2.7
66.0.0
9.0
30.3
193.6

2.5
4.9
2.4
1.0
11.6
1.7
4.5
18.5

Mining 
statistics

N Mean km 
distance within
census block (SD)

Minimum-maximum 

Injection sites

Slurry
impoundments

Mining sites

Preparation
plants

270

105

4,026

76

32.6 (31.4)

32.1 (33.0)

7.0 (6.8)

27.0 (22.6)

0.6 – 131.9

0.9 – 143.4

0.08 – 35.1

1.0 – 114.3

Table 2. Descriptive statistics: age-adjusted cancer mortality
rates per 100,000 person-years and mining activity.

Table 3. Correlations between mining activity and cancer mortality rates for distance-weighted exposure (Pearson correlation)
and tonnage exposure (Spearman correlation) measures.

* P <0.05; ** P <0.02; *** P <0.01; **** P <0.001

*County mortality rates

Components of distance
weighted measure

Distance weighted
measure

Tonnage
measure

Cancer site Injection sites Impoundments Mines Prep plants Total exposure Categorical coal 
mining in tons

Breast
Digestive
Genital
Oral
Respiratory
Urinary
Other
Total

0.28*
0.01
-0.2
-0.03
0.23
0.01
0.34**
0.24

0.33**
0.08
-0.09
-0.01
0.37***
0.07
0.34**
0.37***

0.26
0.13
0.01
0.07
0.57****
0.08
0.43****
0.55****

0.30*
-0.01
-0.07
0.09
0.36***
0.01
0.41***
0.36***

0.29*
0.11
-0.03
0.06
0.53****
0.07
0.44****
0.51****

0.29*
-0.06
-0.13
0.03
0.24
-0.04
0.38***
0.28*
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tance-weighted exposure measure but not the ton-
nage measure. Effects were significant (P <0.05) for
both exposure measures for breast, respiratory, and
“other” cancer, but reached higher significance lev-
els for respiratory and “other” cancer. These results
are summarized in Table 4. Results for the remain-
ing cancer sites were not significant with either
exposure measure and are not included in the table.

Discussion

Results of the correlation and regression analyses
supported the study hypotheses. The distance-
weighted, at-risk population coal mining exposure
measure was significantly correlated to cancer mor-
tality in West Virginia. For total cancer and three
cancer subgroups, the exposure measure was corre-
lated to higher mortality after controlling for smok-
ing rates. The previous exposure measure, based on
tonnage, was not related as strongly to cancer mor-
tality. For total cancer the effect was significant only
for the distance-weighted measure. The data are
correlational and causal links cannot be proven, but
the superior performance of the distance-weighted
exposure measure is consistent with the possibility
of environmental contamination from the mining
industry as a causal factor in the etiology of cancer
for populations residing in West Virginia.

The global Moran’s I indicated that the variables
of interest had positive spatial autocorrelation and

were spatially dependent. However, as with all cor-
relation studies, other confounding factors could
have been spatially correlated to one or both vari-
ables of interest. The LISA statistic identified these
positive spatial clusters (high-high and low-low),
while the spatial outliers identified areas for future
research and/or investigations.  

In previous published studies, based on the coun-
ty measure of tonnage as the exposure variable, sig-
nificant effects were found between this measure
and various health outcomes including lung cancer
(Hendryx et al., 2008), chronic heart, lung and kid-
ney disease (Hendryx, 2009), and self-reported
health (Hendryx and Ahern, 2008). However, these
previous studies considered larger samples of coun-
ties representing the entire Appalachian region or
the whole nation. In one case it was based on a large
person-level sample of over 16,000 cases.  In the
current study, that was limited to a small sample of
55 counties, the smoking-adjusted associations did
not reach as strong a statistical significance with the
old categorical variable as with the new distance-
weighted exposure variable as the new measure has
stronger power to detect effects.

All four components of the mining industry (injec-
tion sites, preparation plants, impoundment ponds
and mines) were related to one or more cancer
types, although the injection sites were the least cor-
related and mining boundaries the most strongly
correlated to cancer. This pattern is particularly

Table 4. Regression results to predict age-adjusted cancer mortality from alternative exposure specifications, controlling for
smoking rates.

* Model adjusted R2 includes exposure measure and smoking rate as independent variables. F values for all models significant at P
<0.02 or greater, with the exception of both models for breast cancer, which had P <0.10.

Distance weighted
measure

Tonnage
measure

Standardized
Beta

P < Model adjusted
R2*

Standardized
Beta

P < Model adjusted
R2*

Cancer site
Breast
Respiratory
Other
Total

0.303
0.367
0.441
0.369

0.04
0.002
0.002
0.003

0.05
0.42
0.16
0.36

0.283
0.228
0.324
0.206

0.04
0.05
0.02
0.09

0.05
0.35
0.1
0.28
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clear for respiratory and total cancer, and as respi-
ratory cancer is the most common fatal cancer (see
Table 1), it drives much of the total cancer variance.
The strong association between respiratory cancer
and mining boundaries, controlling for smoking,
may reflect air quality problems around the mines,
especially at mountaintops and other surface mining
operations. Dust from coal mining is more severe at
surface versus underground coal mining sites
(Ghose, 2007) and surface mining as a percent of
total mining has been increasing in West Virginia
(WVGES, 2007b).

We recognize that the study has several limita-
tions. Firstly, imprecision exists in the temporal rela-
tionships between exposure and cancer mortality.
The development of cancer from exposure to envi-
ronmental pollutants is a long-term phenomenon,
and yet in this study mortality for the years 1979-
2004 was related to activities of the industry as they
could be constructed from available sources for
approximately the same years. Cancer mortality
was collapsed across these years to produce suffi-
cient cases to examine specific types of cancer at the
county-level in a relatively rural state with a small
population. We assume that current mining reflects
past mining, and this assumption is justified based
on the long history of coal mining in the region
(Hickam, 1998; Goodell, 2006) but, to the extent
this not being the case, error in the exposure esti-
mates is introduced. However, because the study
compared alternative measures of exposure, each
with this time limitation, the relatively stronger
results for the distance-exposure measure are still
relevant.

The temporal imprecision extends to estimates of
population characteristics that are taken from the
2000 Census and nearby years, relative to the long
aggregation of cancer mortality over the period
1979-2004. Changes in population characteristics
due to migration or other dynamics might influence
cancer estimates separately from mining activities.
We note two population characteristics in response
to this. One is that the overall population of West
Virginia declined between the 1980 and 1990

Census (1.94 million to 1.79 million), then was
largely stable from 1990 to 2000 (1.79 to 1.81 mil-
lion.) The second is that population loss to emigra-
tion affected coal-mining counties significantly
more than non-mining counties: between 1980 and
1990, the average coal mining county lost 5,233
people to migration compared to a loss of 1,175
people for non-mining counties (WVDHHR 2002).
Between 1990 and 2000, the average coal mining
county lost 663 people, while the average non-min-
ing county gained 2,061 people (WVDHHR, 2002).
The differential loss from mining areas could serve
to make our observed mining effects more conser-
vative than they are, because people may become
exposed in mining area but develop cancer later in
another area.  

Secondly, although these methodologies are in line
with other studies (Lin et al., 2002; Reynolds et al.,
2005; Choi et al., 2006) we recognize the limitations
of simple distance proximity equations (Maantay,
2002). More detailed methods, such as the develop-
ment of pollution surfaces (Hoek et al., 2001;
Buzzelli and Jerrett, 2003), the creation of disper-
sion models (English et al., 1999; Poulstrup and
Hansen, 2004), or more advanced proximity analy-
sis may yield better results. We utilized the best data
available to complete this study. Many of the men-
tioned methods would require much more detailed
data, such as particulate matter measurements or
water sampling regimes, or referring to data at the
person level rather than the county level such as
individual cancer data. The results of this study,
though limited by methodology, should be sufficient
to justify more detailed field studies.

Thirdly, results of the correlation and regression
analyses assumed independence between observa-
tions, when in fact the results of the spatial models
demonstrated autocorrelation between adjacent
counties in the dependent variable, cancer mortality
rates. Models that account for spatial autocorrela-
tion such as linear mixed models might be prefer-
able but are constrained by the data (i.e. a sample of
55 at the single level of the county). These correlat-
ed observations may be expected to overestimate
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effects. However, as noted above, this problem
would affect both the tonnage measure and the dis-
tance-weighted measure, and so the relatively better
performance of the distance-weighted measure is
still pertinent. 

Lastly, the study is also limited by the ecological
design in that no direct, person-level measures of
environmental exposure are available. The small
sample size, 55 counties, provides limited statistical
power to detect effects, and the lack of effects for
some cancer types may be a consequence of this.
Follow up research is needed to verify environmen-
tal impacts of coal mining on local air and water
quality, and relate these impacts to population
health by examining person-health exposures and
health outcomes.
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