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Abstract. The problem of multiple testing is rarely addressed in disease mapping or descriptive epidemiology. This issue
is relevant when a large number of small areas or diseases are analysed. Control of the family wise error rate (FWER),
for example via the Bonferroni correction, is avoided because it leads to loss of statistical power. To overcome such dif-
ficulties, control of the false discovery rate (FDR), the expected proportion of false rejections among all rejected
hypotheses, was proposed in the context of clinical trials and genomic data analysis. FDR has a Bayesian interpreta-
tion and it is the basis of the so called q-value, the Bayesian counterpart of the p-value. In the present work, we address
the multiplicity problem in disease mapping and show the performance of the FDR approach with two real examples
and a small simulation study. The examples consider testing multiple diseases for a given area or multiple areas for a
given disease. Using unadjusted p-values for multiple testing, an inappropriately large number of areas or diseases at
altered risk are identified, whilst FDR procedures are appropriate and more powerful than the control of the FWER
with the Bonferroni correction. We conclude that the FDR approach is adequate to screen for high/low risk areas or
for disease excess/deficit and useful as a complementary procedure to point estimates and confidence intervals.

Keywords: descriptive epidemiology, disease mapping, small areas, multiple testing, false discovery rate.

Introduction

Atlases of mortality and morbidity, as well as a
number of descriptive epidemiological studies, pres-
ent long lists of relative risks and associated hypoth-
esis tests that aim to detect deviations from local or
national averages. Risk estimates and p-values may
be reported for a given disease by a set of areas
where the null hypothesis is no departure from the
reference rate (e.g. regional or national).
Alternatively, we may study the whole spectrum of
diseases for a given area and be interested in assess-
ing departure from a set of reference rates.  

In such epidemiological investigations, estimation
and prediction are the main issues. However, when

considering public health implications of disease
mapping, decision rules have been discussed
(Richardson et al., 2004) but, in practice, only p-
values are used to scrutinize lists of relative risks.
This raises the question about how to communicate
uncertainty and report scientific results. It is well
known how easy p-values and confidence intervals
(CI) can be misunderstood (Goodman, 2001; Sterne
and Davey Smith, 2001). Notwithstanding, current
reporting practice in descriptive epidemiology is to
ignore multiple comparisons (see the influential
paper of Rothman, 1990), while, in functional
genomics data analysis and other “high-through-
put” biological areas of applications, control of the
false discovery rate (FDR) is popular because thou-
sands of genes are simultaneously evaluated and
there is no interest yet in estimation of quantitative
effect measures (Storey, 2003; Wakefield, 2008). 

Indeed, little work has been done on FDR in the
field of geographical epidemiology. A PubMed
search for “disease mapping, spatial mapping, spa-
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tial epidemiology, FWER, FDR, multiple compari-
son” produced very few pertinent citations
(Richardson et al., 2004; Best et al., 2005; Castro
and  Singer, 2006; Goovaerts et al., 2007; Catelan
and Biggeri, 2008). 

One explanation is that Bayesian approaches to
smooth relative risk estimates may be interpreted as
a solution to the problem (Clayton and Kaldor,
1987). Bayesian posterior estimators minimize a
squared loss function over the whole set of areas and
in this respect they are superior to maximum likeli-
hood estimates (Efron and Morris, 1973). Bayesian
estimates are also used in epidemiological applica-
tions where long lists of relative risks are compared
(Greenland and Robbins, 1991; Carpenter et al.,
1997). However the two approaches, FDR and
Bayesian smoothing, do not necessarily produce sim-
ilar inferences. Moreover, in studies such as disease
mapping with a collection of parameters of interest,
there are different inferential goals: estimating rela-
tive risks, their distribution, their ranks, and testing
multiple hypotheses (Shen and Louis, 1998). There is
no unique optimal solution for all those inferential
tasks in the sense that there is no one estimator that
is superior on all accounts. The approaches proposed
in the literature have mainly been directed towards
risk estimation. Heterogeneity variance and ranking
have been addressed in only a few cases (Goldstein
and Spiegelhalter, 1996; Pennello et al., 1999;
Böhning et al., 2004; Catelan and Biggeri, 2008).
With regard to hypothesis tests, posterior probabili-
ties derived from hierarchical Bayesian models or
classification probabilities from mixture models have
been used (Biggeri et al., 2000; Militino et al., 2001;
Best et al., 2005). However, all these approaches fail
to address the multiple comparison problems
because an appropriate Bayesian approach would
consist of a tri-level hierarchical Bayesian model for
the estimation of the posterior probability of a given
disease/area belonging to the set of null or alternative
hypotheses (Müller et al., 2006; Catelan et al.,
2009). 

Notwithstanding this, there is a field where multi-
ple comparison is considered: cluster detection in

spatial and spatio-temporal surveillance. There con-
trol of the family wise error rate (FWER) is applied
(Kulldorff, 2001; Frisén, 2003). Bonferroni correc-
tion is the most popular FWER control: for fixed
level α of probability of type I error, it consists in
doing m hypothesis tests controlling the significance
level per test at α*=α/m. This approach is extreme-
ly conservative whenever the number of tests is
large. Rolka et al. (2007) discussed the cost in sen-
sitivity of adopting a FWER approach for monitor-
ing and mentioned the FDR control in epidemiolog-
ical surveillance. FDR is the expected value of the
rate of false positives among all rejected hypotheses
and was introduced, in the context of clinical trials
by Benjamini and Hochberg (1995) to improve the
statistical power of the test. FDR has a Bayesian
interpretation and it is the basis of the so called q-
value (Storey, 2003), the Bayesian counterpart of the
p-value. The FWER and the FDR are based on dif-
ferent philosophies. The former is appropriate when
we are performing multiple tests of the same null
hypothesis. On the other hand, if we are testing dif-
ferent null hypotheses the latter is more appropriate
and allows for an easier communication of the relat-
ed uncertainty. In the last years, FDR control has
been proposed for the screening of “hot spots”
(Castro and Singer, 2006) and for profiling health
care providers (Ohlssen et al., 2007; Jones et al.,
2008). 

In the present paper, we address and justify the
FDR approach in the context of descriptive epi-
demiology with two real examples and via a small
simulation study.

Materials and methods

Motivating examples

The first example is based on the report
“Environment and Health in Sardinia” (Biggeri et al.,
2006) commissioned by the Secretary of Health,
Hygiene and Social Welfare of the Region to screen
the health status of the resident populations in 18 a
priori identified areas at high environmental pressure
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by industrial mining and military activities. For each
area, 36 ICD9 disease codes with respect to mortali-
ty and 48 disease codes with respect to hospital
admission were analysed resulting in 1,512 estimates
of relative risk for each sex. We are in a “large table”
context as defined in Carpenter et al. (1997) and Law
et al. (2001). For the purpose of this work, we
extracted 29 age- and deprivation-adjusted
(Carstairs, 1995) standardised mortality ratios
(SMR) for the period 1997-2001 that referred to
mutually exclusive ICD9 disease codes relative to
male residents in the industrial area of Portoscuso,
one of the 18 analysed areas. The goal was to identi-
fy the diseases for which the population demonstrat-
ed a risk that was divergent from the regional mean. 

The second example refers to geographical
descriptive epidemiology and uses data from the
“Atlas of Mortality in Tuscany” (University of Pisa,
2001). Lung cancer death certificates were consid-
ered for male residents in the 287 municipalities of
the Tuscany region (Italy) for the period 1995-1999.
Following indirect standardisation and classifying
of the population by 18 classes of age (0-4 years, 5-
9 years etc. up and including “85 years or more”), a
set of reference rates (Tuscany, 1971-1999) were
used to compute the expected number of cases for
each municipality. The goal was to identify munici-
palities with divergent risk from the regional mean.

While controlling for the uncertainty related to
multiple testing, the two examples belong to differ-
ent camps of epidemiological surveillance: identify-
ing the diseases at altered risk in a given area vs.
identifying the areas at altered risk for a given dis-
ease. In both situations, we wanted to test different
null hypotheses and our decision, based on the
whole set of estimates of relative risks, was not erro-
neous even if some of the null hypotheses were false-
ly rejected. Indeed, in the first example, to define an
area as being at altered risk on the basis of, for
example, 10 diseases in excess/deficiency are not
erroneous even if some of the rejected null hypothe-
ses are erroneously rejected. In the second example
related to disease mapping, the erroneous rejection
of the null hypothesis for some municipalities does

not challenge the results of the whole descriptive
analysis whose aim is to assess heterogeneity of risk
in the entire study region.

In both cases, it is more appropriate to control the
expected number of false positives over the total num-
ber of rejected hypotheses (FDR), than strictly control
the probability of at least one false positive among all
tests (FWER) (Benjamini and Hochberg, 1995).

Methods

Table 1 reports the possible outcomes from the m
tests where m is known a priori and R, the number
of rejected hypotheses, is the only observable ran-
dom variable. In the context of multiple inferences,
we traditionally control the error rate at a desired
level while maintaining the power of each test as
much as possible. The commonly controlled quanti-
ty is FWER, the probability of which yields one or
more false positives out of all tests. The most com-
monly used method is the Bonferroni correction, i.e.
if we set the probability of type I error at α and m
tests are performed, each test is controlled at the
level α* = α/m (Bonferroni, 1936). This guarantees
that the probability of a false positive is at maxi-
mum equal to α.

Formally, in terms of Table 1, we can define the
FWER = Pr (V ≥1). However, there are situations
(see the motivating examples) in which this quan-
tity is not of real interest and the attention moves
to the expected proportion of error among all
rejected hypotheses. Benjamini and Hochberg
(1995) called this quantity the false discovery rate
(FDR). Following the notation of Table 1, the FDR
can be formally defined as:

FDR = E = E V
R ∪ 1

V
R

R >0 Pr (R >0),

Accept H0 Reject H0

True H0

Not true H0

U
T

m-R

V
S
R

M0

m-M0

m

Table 1. Possible outcomes from hypothesis tests.
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where “E[.]” stands for expected value and “R∪1”
is the maximum between “R” and 1 which guaran-
tees that FDR = 0 when no hypothesis is rejected.
The FDR is thus defined as the expected value of the
ratio between the number of null hypotheses erro-
neously rejected and the total number of rejected
hypotheses. If M0 = m, the null hypothesis is true for
all tests, then FDR = FWER, because

Otherwise it is lower. The larger the number of
true rejections is, the larger the gain in power is.

Storey (2003) defined the positive FDR (pFDR)
as:

where “positive” denotes that we are conditioning
the occurrence of at least one rejection. We cannot
control positive FDR because if M0 = m then pFDR
= 1. This is natural since any rejection must be false
if all null hypotheses are true. However for a given
significance level, i.e. a given rejection region, a
conservative null estimate of pFDR can be
obtained.

The pFDR can be derived as a posterior Bayesian
probability, i.e. the posterior probability of the null
given that the test statistics fall in the rejection
region. This derivation assumes that the tests are
exchangeable in the sense that we have no reason to
believe that the probability of the null should be
greater for some tests (in detail, let Hi = 0 denote the
event that the null is true for the i-th test, then
assume the Hi are independent and identically dis-
tributed (iid) Bernoulli random variables and the
test statistics are iid Ti|Hi ~ (1-Hi)xF0 + HixF1 for
some null and alternative distribution F) (Storey,
2003).

The pFDR has a connection with classification
theory and can be used to define the q-value, the
Bayesian counterpart of the p-value. The pFDR
approach uses all information from prior probabili-
ty of the null (Storey, 2002) and from the data and
is thus more powerful than the FDR (see Storey,

2003, for a complete description of the properties of
pFDR).

If we define for a given type I error probability α,
a test statistic T and a rejection region G, the pFDR
can be written as:

that is a posterior Bayesian probability. Note that
the probability to observe a certain value for the test
statistic T is equal to a mixture of the distribution
under null (H0) and alternative (H1) hypothesis:

where π0 is the a priori probability that the null
hypothesis is true and π1 = 1- π0. 

If we consider the probability of values equal or
more extreme than Tobs (observed value of the test
statistic) we have:

This posterior probability is defined as the q-value
and represents the Bayesian analogue of the p-value –
Pr (T ≥Tobs|H0). In other words, the p-value is a meas-
ure of the strength of the empirical evidence against
the null hypothesis (it is the minimum type I error
that we can incur when we reject the null hypothesis
on the basis of the observed value of the test statistics
T). The q-value is the minimum pFDR that we can
incur when we reject the null hypothesis on the basis
of the observed or more extreme values of the test sta-
tistics T. The q-value is a measure that takes into
account for the multiplicity of the tested hypotheses
and represents how far we are from the null hypoth-
esis on the basis of observed data. Being a posterior
probability, the q-value takes into account not only
the null, but also the alternative hypothesis

E = Pr (R >0).V
R ∪ 1

pFDR = E V
R
R >0  ,

pFDR(Γ) = Pr(H0T ∈ Γ) =

Pr(T ∈ Γ) = π0 Pr(T ∈ ΓH0)+π1 Pr(T ∈ ΓH1),

π0 Pr(T ∈ ΓH0)
π0 Pr(T ∈ ΓH0)+π1 Pr(T ∈ ΓH1)

pFDR{(T ≥Tobs)} =

= Pr (H0T ≥Tobs).

π0 Pr(T ≥TobsH0)
π0 Pr(T ≥TobsH0)+π1 Pr(T ≥TobsH1)
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(Goodman, 2001). Algorithms for the evaluation of
pFDR and q-value are discussed in Storey (2002).
Additional details are provided in  the Appendix.

Results

Example 1

From the report on high-risk areas of the Sardinian
region, we extracted 29 age- and deprivation-adjust-
ed SMRs for the period 1997-2001 for male resi-
dents in the industrial area of Portoscuso (Biggeri et
al., 2006). In Table 2, we report the observed and
expected number of cases, including p-values and q-
values for the 10 diseases with associated p ≤0.10.
Setting α at 10%, Bonferroni’s correction gives a sig-
nificance level α* = 0.0035 (0.10/29 the number of
causes of death analyzed): only three p-values are
below α*. By thresholding q-values at 10%, we iden-
tified five diseases. Of note, whilst the p-value is the
minimum rate of false positive, in which we incur
rejecting the null hypothesis, the q-value represents
the minimum rate of false “discoveries”, which is the
proportion of erroneously rejected tests over all the
rejected tests. It means that over the five diseases
declared different from the null by the q-value, “on
average” 0.10 x 5 is a false positive, even if we can-
not identify which of them it is.

Example 2

Considering the second example, i.e. lung cancer
mortality in Tuscany at the municipality level, the
SMRs exhibit a strong geographical heterogeneity
(Fig. 1) and a wide range of values (Fig. 2) suggest-
ing the presence of areas at high/low risk for the
investigated disease. In Table 3, we report the
observed and the expected numbers of cases, includ-
ing p-values and q-values for the 11 municipalities
with the lowest q-values. Fixing α at 0.10
Bonferroni’s correction results in a threshold level
α* of 0.0004 (0.10/287, which is the number of
municipalities) only two p-values are below α*.
Thresholding q-values at 10% identify six munici-
palities. Selecting p-values at α = 0.10 level of sig-
nificance leads to a high number of rejections and,
on the other side, the FWER control results in only
two comparisons satisfying the significance level.

Fig. 1. Geographical distribution of relative risk (SMR) for male
lung cancer mortality in Tuscany region, Italy, 1995-1999.

Disease Cases Expected p-value q-value

Pneumoconiosis

Diabetes

Prostate cancer

Coronary heart disease

Lung cancer

Respiratory acute

Liver cirrhosis

Ill defined conditions

Respiratory chronic

Melanoma

112

15

15

126

136

48

30

10

45

0

30.47

33.09

32.63

155.36

109.63

33.85

44.03

18.99

60.45

3.00

<0.0001

0.0005

0.0007

0.0161

0.0169

0.0250

0.0292

0.0302

0.0403

0.0536

<0.0001

0.0066

0.0066

0.0979

0.0979

0.1095

0.1095

0.1095

0.1299

0.1554

Table 2. Example 1 results. Observed and expected number
of cases, p-value and q-value. Industrial area of Portoscuso,
male death certificates 1997-2001. Reports on high risk areas
in the Sardinian region, Italy. Diseases with FDR ≤10% are
reported in bold.
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The estimates of the proportion p0 of true null
hypothesis proposed by Storey (2002) were close to
one in the first example and 97% in the second
example. They represent two different situations: in
the first example we have a low-moderate number
of hypotheses tests (below 50) and in the second we
have a moderate-high number of hypotheses tests
(between 200 and 500). In the last situation, we
have enough data to consistently estimate p0 and

when the number of comparisons is small it has
been suggested not to estimate p0 and fix it to one
(Ohlssen et al., 2007).

Split sample study and a small simulation study

To demonstrate the point that p-values actually
lead to false positives regarding the hypotheses test-
ed, we have used data from the second example. We
took male lung cancer deaths over the 10-year cal-
endar period 1996-2005 in the 287 Tuscan munici-
palities and analysed the whole 10-year period and
two 5-year periods obtained summing up even or
odd years. Of 68 (31+2, 30+5) discordant munici-
palities, i.e. with p-values below the two-sided 10%
significance level in one split-sample and above the
significance level in the other, 61 (90%) were not
detected by thresholding q-values at 10%. Using p-
values for the whole 10-year period, we would have
declared up to 39 (18+21) over 68 (57%) munici-
palities as divergent with discordant p-values in the
subsets (Table 4). The q-value approach leads to
appropriately discarding the less reproducible
results, which is not the case when p-values are
used.

To check the assumption of uniformity of p-val-
ues under the null hypothesis, we simulated 1,000
datasets from the data of the second example, i.e.
lung cancer among males in 287 municipalities of
the Tuscany region. Using internal indirect stan-
dardization, values obtained over the 10-year peri-
od, 1996-2005, were assumed to be expected val-
ues. The marginal distribution of p-values over all
the municipalities was roughly uniform. The per-
centage of p-values, less than or equal to 0.05 was
4.43%, i.e. slightly below the nominal value. The
smaller the Poisson mean the more conservative
the test statistic. Indeed in this data only 6.97% of
municipalities had low expected counts under indi-
rect standardisation, i.e. small population at risk.
Our approach based on q-values should be consid-
ered with caution when the number of observa-
tions with expected counts less than  five is greater
than 20%. 

Fig. 2. Histogram of relative risks (SMR) for male lung can-
cer mortality in Tuscany region, Italy, 1995-1999.

ISTAT
Municipality code

Cases Expected p-value q-value

46033

46005

45003

51020

46017

52035

47012

51001

48001

46002

52007

205

108

203

3

266

8

71

6

47

34

2

138.80

73.53

157.67

13.87

215.41

20.95

48.89

16.91

69.94

19.60

9.28

<0.0001

0.0002

0.0006

0.0006

0.0009

0.0017

0.0032

0.0035

0.0041

0.0047

0.0065

0.0001

0.0248

0.0447

0.0447

0.0523

0.0766

0.1226

0.1226

0.1274

0.1293

0.1637

Table 3. Example 2 results. Observed and expected number
of cases, p-value and q-value. Male lung cancer mortality,
Tuscany region, Italy, 1995-1999. Municipalities with FDR
≤10% are reported in bold.
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Discussion

Computation of the q-value is easy and essential-
ly based on observed p-values. The procedure is
robust and independent from the model used to
obtain the p-values (Storey, 2002). The FDR
approach has a strong advantage in terms of statis-
tical power with regard to standard procedures for
FWER control such as that of Bonferroni. Here we
are concerned with controlling the rate of false dis-
coveries, while at the same time maintaining accept-
able power. If the study aims to explore any possible
deviations from the null hypothesis, the reader
should be advised that the proposed approach could
still be weak in terms of the rate of false negatives.
Eventually, controlling FDR at 20% may be appro-
priate.

We used a thresholding level of 10% for q-values.
Recently Jones et al. (2008) discussed this approach
in the context of health care provider profiling and
noted that q-values can be screened in an explorato-
ry manner without having a fixed significance level
in advance. This is an advantage regarding the FDR
controlling procedure, where we need to declare a
cut-off point (Benjamini and Hochberg, 1995).

With regard to the estimate of π0, i.e. the true null
hypothesis proportion, we suggest exploring the sta-
bility of the estimate assuming different a priori
beliefs (Storey, 2002) and to compare the results
with the Benjamini-Hochberg approach that implic-

itly assumes the conservative prior of 1 for π0 (see
for example Jones et al., 2008). Benjamini et al.
(2006) discussed several procedures that also are
suitable when the number of tests is not large.
Applying their approaches in the present settings
produced results identical to those obtained by
thresholding q-values.

It is not always easy to figure out p-values that
have coverage probabilities that correspond to the
nominal ones. With count data (e.g. number of
deaths or cases of disease), a maximum likelihood
estimate of relative risk is given by the ratio of the
observed and expected number of cases using indi-
rect standardisation. Exact p-values can be obtained
directly from the Poisson distribution. It must be
noted that in this case, one and two-sided p-values
may coincide. Eventually, direct exploration of the
likelihood profile for the rate ratio under the null
hypothesis is necessary. Some would argue in favor
of using mid-p adjustment (Jones et al., 2008).
However the approach described applies to whatev-
er model chosen to calculate p-values.

It can be argued that spatial dependence could be a
problem with the FDR approach. We also applied the
Yekutieli-Benjamini procedure, which is robust for
violation of independence assumption (Yekutieli-
Benjamini, 1999). As expected, we obtained a small-
er number of discoveries (three in the first example
and one area in the second example, thersholding at
0.10). That procedure, which is robust under depend-
ence, behaved conservatively in our examples. We
prefer to accept the independence assumption. The
reader should note that it is reasonable to assume
exchangeability in the context of disease mapping as
demonstrated by Lawson et al. (2000). In that paper,
a large simulation study showed favourable behav-
iour of spatially independent models.

Indeed, here information from the whole distri-
bution of the test statistics, or from a set of them,
was not considered. For example, in the disease
mapping context, it is popular to make inference
with regard to the relative risk of one area using the
information coming from adjacent areas. Storey
(2007) proposed an optimal discovery procedure

Table 4. Male lung cancer mortality in Tuscany region, Italy,
1996-2005. Analysis of the whole data period and on split
data by odd or even calendar year. Areas are cross-classified
by p-values ≤0.10 and q-values.

Even years (1996, 1998, 2000, 2002, 2004)

p >α P ≤α

Odd years (1997, 1999, 2001, 2003, 2005)

1996-2005 p >α p ≤α p >α p ≤α

q >0.10

q ≤0.10

p >α

p ≤α

203

0

191

12

31

2

15

18

30

5

14

21

3

13

1

15
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(ODP) to make multiple inferences when using
non-independent observation. The ODP uses infor-
mation coming from all the hypotheses tests and
the significance of each test is given by the weight-
ed average of p-values of all the tested hypotheses
(a kind of “shrinkage” estimator). The ODP, intro-
duced by Storey (2007) in the analysis of DNA
microarray data, shares the same ideas, which
underlie Bayesian methods, developed in the con-
text of disease mapping (Clayton and Caldor, 1987;
Besag et al., 1991). 

In the present paper, we conservatively maintain
the exchangeability assumption. A full Bayesian
alternative is to develop a tri-level hierarchical
Bayesian model to estimate the posterior probabili-
ty of a given disease/area to belong to the set of the
null hypothesis or alternative sets (Müller et al.,
2006). Further developments will consider spatially
structured priors in hierarchical Bayesian models
for disease mapping (Catelan et al., 2009).

Other approaches have been proposed in the sci-
entific literature for analysing “large tables”. For
example, Quantile-Quantile plots of empirical
Bayes estimates with appropriate “guide rails” have
been proposed for the screening of long lists of rel-
ative risks (Carpenter et al., 1997; Law et al.,
2001). This graphical approach is appealing, but it
is more appropriate in detecting the presence of a
small number of outlying risks and may fail to
detect extremes when a high number of altered dis-
eases (within the area) or areas (for a given disease)
is expected. Others have taken advantage of the dis-
tance among cases and have developed cluster
detection methods in the context of epidemiological
surveillance. There are applications using those
methods on areal data like those used in disease
mapping. Multiple testing is controlled by the
FWER procedure (Kulldorff, 2001). Rolka et al.
(2007) discussed the use of FDR in surveillance.
However, the reader should be aware that in the
present work, example 2 is in the context of a dis-
ease atlas where a cluster detection analysis would
be inappropriate, because the size of the areas is too
large.

Finally, when we are concerned with estimating
the set of altered diseases/areas among all available
data, the approach outlined in this paper is appro-
priate. If we were to be concerned only with the
estimation of the relative risk of one disease/area
there would be only one test statistic and no multi-
ple testing problem would arise. In this case, assum-
ing a Bayesian perspective, under a different prior in
favour of the null hypothesis, posterior probabilities
having the same interpretation of q-value can be
derived as outlined by Goodman (2001). 

Conclusions 

Geographical epidemiology is essentially based on
maps of relative risk or identification of clusters of
disease cases. Specific investigations usually follow
positive results. In disease surveillance, control of
type I error is commonly pursued following FWER
procedures (a discussion on alternatives to improve
the sensitivity of these techniques can be found in
Rolka et al. (2007). In current practice, there is no
formal adjustment in disease mapping.

We present two examples in which inconsistencies
due to multiple inferences are present, i.e. to evalu-
ate different diseases in a given area or the same dis-
ease across different areas. We considered the
Bayesian alternative to p-value, i.e. the q-value
(Storey, 2003), to identify extreme diseases or areas.
Bayesian posterior probabilities are more appropri-
ate as illustrated by the examples and may be more
useful to communicate results to lay people.

We suggest the use of FDR control procedures to
screen for high risk areas or for excess diseases. This
approach is appropriate for coping with multiple
testing and overcomes the low power of the tradi-
tional FWER control procedures. FDR control is
suggested as complementary to the use of point esti-
mate and confidence intervals.

Appendix

The p-values are distributed as Uniform (0,1),
under the null. The distribution of the ordered



p-values is Beta (i,m+1-i) with expectation i/(m+1).
The smallest p-value over m tests is therefore dis-
tributed as follows:

F(p(1)) ∝ 1-(1-p(1))m ≈ m x p(1) 

when p is small, and the generic i-th ordered p-value
as; 

Therefore, FDR can be controlled at level α sort-
ing the p-values and taking as the cut-off critical
value the one that corresponds to the largest p-value
which satisfies: 

If i = 1, the smallest p-value, the procedure is
equivalent to Bonferroni’s correction.

Instead of looking for the cut-off corresponding to
a desired level of FDR, we can explore all the test
statistics, taking the observed test statistics as criti-
cal point. This is the way we explore the whole set
of p-values and here we can use pFDR to derive a
more appropriate quantity, the q-value.

The pFDR can be written in terms of a posterior
probability as:

that can be estimated, for a given rejection region,
as 

The q-value is therefore given by 

The pFDR procedure depends on π0. The
Benjamini-Hochberg approach implicitly assumes
π0 = 1. This is conservative. Storey  (2002)  proposed

an algorithm to estimate π̂0:

for fixed λ. A bootstrap method to select optimal λ
is given by Storey (2002). 

q-value is a posterior probability and can be
expressed as

posterior odds = prior odds x Bayes factor. 

Goodman (2001) provides examples of the Bayes
factor which are functions of p-value. They are
interpretable as a global minimum over the null
hypothesis: 

minimum BF = exp{-Φ-1 (p-value)2/2}

where Φ-1 is the inverse Normal and p-value is two
sided.

For example, if we assume a prior odds for the
null 9:1, then, to achieve at least a posterior odds of
1:4 (i.e. controlling FDR at 20%), we should have a
minimum BF=1/36 (indeed, 1/4=9/1 x BF). The
associated p-value is at most 0.0037, which is strong
evidence against the null while controlling for mul-
tiple comparisons (Goodman, 2001).
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